Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.30.478343

ABSTRACT

SARS-CoV-2-specific memory T cells that cross-react with common cold coronaviruses (CCCs) are present in both healthy donors and COVID-19 patients. However, whether these cross-reactive T cells play a role in COVID-19 pathogenesis versus protection remain to be fully elucidated. In this study, we characterized cross-reactive SARS-CoV-2-specific CD4+ and CD8+ T cells, targeting genome-wide conserved epitopes in a cohort of 147 non-vaccinated COVID-19 patients, divided into six groups based on the degrees of disease severity. We compared the frequency, phenotype, and function of these SARS-CoV-2-specific CD4+ and CD8+ T cells between severely ill and asymptomatic COVID-19 patients and correlated this with alpha-CCCs and beta-CCCs co-infection status. Compared with asymptomatic COVID-19 patients, the severely ill COVID-19 patients and patients with fatal outcomes: (i) Presented a broad leukocytosis and a broad CD4+ and CD8+ T cell lymphopenia; (ii) Developed low frequencies of functional IFN-gamma-producing CD134+CD138+CD4+ and CD134+CD138+CD8+ T cells directed toward conserved epitopes from structural, non-structural and regulatory SARS-CoV-2 proteins; (iii) Displayed high frequencies of SARS-CoV-2-specific functionally exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells; and (iv) Displayed similar frequencies of co-infections with beta-CCCs strains but significantly fewer co-infections with alpha-CCCs strains. Interestingly, the cross-reactive SARS-CoV-2 epitopes that recalled the strongest CD4+ and CD8+ T cell responses in unexposed healthy donors (HD) were the most strongly associated with better disease outcome seen in asymptomatic COVID-19 patients. Our results demonstrate that, the critically ill COVID-19 patients displayed fewer co-infection with alpha-CCCs strain, presented broad T cell lymphopenia and higher frequencies of cross reactive exhausted SARS-CoV-2-specific CD4+ and CD8+ T cells. In contrast, the asymptomatic COVID-19 patients, appeared to present more co-infections with alpha-CCCs strains, associated with higher frequencies of functional cross-reactive SARS-CoV-2-specific CD4+ and CD8+ T cells. These findings support the development of broadly protective, T-cell-based, multi-antigen universal pan-Coronavirus vaccines.


Subject(s)
von Willebrand Disease, Type 3 , Coinfection , Lymphopenia , Critical Illness , Parkinson Disease , Common Cold , Leukocytosis , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.27.316018

ABSTRACT

Over the last two decades, there have been three deadly human outbreaks of Coronaviruses (CoVs) caused by emerging zoonotic CoVs: SARS-CoV, MERS-CoV, and the latest highly transmissible and deadly SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats, the natural hosts, and transmitted to humans via various intermediate animal reservoirs. Because there is currently no universal pan-Coronavirus vaccine available, two worst-case scenarios remain highly possible: (1) SARS-CoV-2 mutates and transforms into a seasonal "flu-like" global pandemic; and/or (2) Other global COVID-like pandemics will emerge in the coming years, caused by yet another spillover of an unknown zoonotic bat-derived SARS-like Coronavirus (SL-CoV) into an unvaccinated human population. Determining the antigen and epitope landscapes that are conserved among human and animal Coronaviruses as well as the repertoire, phenotype and function of B cells and CD4+ and CD8+ T cells that correlate with resistance seen in asymptomatic COVID-19 patients should inform in the development of pan-Coronavirus vaccines 1. In the present study, using several immuno-informatics and sequence alignment approaches, we identified several human B-cell, CD4+ and CD8+ T cell epitopes that are highly conserved in: (i) greater than 81,000 SARS-CoV-2 human strains identified to date in 190 countries on six continents; (ii) six circulating CoVs that caused previous human outbreaks of the "Common Cold"; (iii) five SL-CoVs isolated from bats; (iv) five SL-CoV isolated from pangolins; (v) three SL-CoVs isolated from Civet Cats; and (vi) four MERS strains isolated from camels. Furthermore, we identified cross-reactive asymptomatic epitopes that: (i) recalled B cell, CD4+ and CD8+ T cell responses from both asymptomatic COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2; and (ii) induced strong B cell and T cell responses in "humanized" Human Leukocyte Antigen (HLA)-DR/HLA-A*02:01 double transgenic mice. The findings herein pave the way to develop a pre-emptive multi-epitope pan-Coronavirus vaccine to protect against past, current, and potential future outbreaks.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL